Chuyển bộ gõ


Từ điển Máy Tính - Foldoc Dictionary
category



category

(theory)   A category K is a collection of objects, obj(K), and a collection of morphisms (or "arrows"), mor(K) such that

1. Each morphism f has a "typing" on a pair of objects A, B written f:A->B. This is read 'f is a morphism from A to B'. A is the "source" or "domain" of f and B is its "target" or "co-domain".

2. There is a partial function on morphisms called composition and denoted by an infix ring symbol, o. We may form the "composite" g o f : A -> C if we have g:B->C and f:A->B.

3. This composition is associative: h o (g o f) = (h o g) o f.

4. Each object A has an identity morphism id_A:A->A associated with it. This is the identity under composition, shown by the equations

 idB o f = f = f o idA. 
In general, the morphisms between two objects need not form a set (to avoid problems with Russell's paradox). An example of a category is the collection of sets where the objects are sets and the morphisms are functions.

Sometimes the composition ring is omitted. The use of capitals for objects and lower case letters for morphisms is widespread but not universal. Variables which refer to categories themselves are usually written in a script font.

Last updated: 1997-10-06



▼ Từ liên quan / Related words
Related search result for "category"

Giới thiệu VNDIC.net | Plugin từ diển cho Firefox | Từ điển cho Toolbar IE | Tra cứu nhanh cho IE | Vndic bookmarklet | Học từ vựng | Vndic trên web của bạn

© Copyright 2006-2024 VNDIC.NET & VDICT.CO all rights reserved.